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Neighbourhood-built environment has been shown to impact walking behaviour in terms of 
density, diversity, design, destination accessibility, and distance to transit, or so-called the 
“5 Ds”. However, the uncertainty in the magnitude of this link remains problematic, partly 
because of how geographic boundaries are operationalized. This study examines appropriate 
geographical units for calculating GIS walkability indices in a tropical context. Using data 
from Putrajaya city, the impact of four commonly used spatial definitions (240, 400, 600, and 
1000-meter network buffers) on the association between the 5 Ds and walking volume was 
investigated, based on GIS measures of 2392 catchment buffers and observations from 123 
gates. The negative binomial regression revealed that indices representing land use compositions 
demonstrated sensitivity to the delineation of boundaries and exhibited a robust relationship at 
broader spatial extents. In contrast, street-related measures such as connectivity and distance 
sustained a stronger association even at smaller scales. Moreover, the 600-meter network scale 
may be the most appropriate for identifying the association between the 5 Ds combination and 
pedestrian counts in residential neighbourhoods. The study recommends prioritizing walkability 
indices that incorporate distances to various facilities as indicators of walkability, as this 
approach can provide a more effective explanation for walking within small buffers.
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1.	 INTRODUCTION 

The built environment within a neighbourhood plays a crucial role 
in shaping residents’ walking habits. Due to its immediate influence, 
numerous studies have investigated the relationship between 
neighbourhood design and walking behaviour. Researchers have 
identified key factors influencing walkability, such as population 
density, residential density, land-use diversity, street connectivity, 
destination accessibility, and proximity to public transit. Findings 
consistently demonstrate that higher densities and diversity, greater 
connectivity, shorter distances to destinations, and easy access to 
public transportation are all positively associated with increased 
walking and pedestrian volume (Frank et al., 2005; Marshall 
et al., 2009; Frank et al., 2010; Grasser et al., 2017; Habibian & 
Hosseinzadeh, 2018; Tao et al., 2020; Gao et al., 2020). These 
factors have been combined into a comprehensive framework known 
as the 5Ds (Density, Design, Diversity, Destinations, and Distance 
to transit), often operationalized using Geographic Information 
Systems (GIS) (Cervero & Kockelman, 1997; Ewing & Cervero, 
2010).

The use of a 5Ds - GIS-based measures has advanced the assessment 
of walkability and yielded novel insights into the relationship 
between the built environment of a neighbourhood and walking 
behaviour (Koohsari et al.,2014). This approach offers more cost-
effective and expeditious assessment tool than traditional field-based 
audits, as it leverages readily available secondary data. However, it 
is essential to recognize that GIS-based measures are sensitive to 
scale and boundary location, referred to as the Modifiable Areal 
Unit Problem (MAUP) (Fotheringham & Wong, 1991). The MAUP 
describes the subjective decisions made in defining the boundaries 
and delineation of areas when reporting contextual effects, which 
pose a significant methodological challenge when defining the 
concept of a “neighbourhood” for walkability research (Brownson 
et al., 2009; Villanueva et al., 2014). In this sense, neighbourhood 
refers to the geographical area within which environmental attributes 
relating to walking are investigated.
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The selection of geographic boundaries to measure the built 
environment concerning walking is a multifaceted process that may 
produce diverse outcomes (C. Lee & Moudon, 2006; Learnihan 
et al., 2011). For example, Mavoa et al. (2019) utilized several 
neighbourhood definitions, including administrative boundaries and 
road network buffers of varying sizes (500, 800, 1000, and 1500 
meters). The findings revealed that the choice of neighbourhood 
definition can influence the detection or absence of an association 
between the built environment and physical activity among 
adults, including walking. Additionally, the study suggests that a 
neighbourhood delineation that is suitable for one built environment 
measure may not be appropriate for other measures. For instance, 
the impact of street connectivity and destination accessibility were 
less likely to be detected at smaller scales (less than 800m), whereas 
residential density and land use mix were more impactful at the 
same geographic unit.

In a similar study, Gehrke and Wang (2020) investigated the impact 
of the built environment on travel mode choice and explored the 
effects of scale selection and zonal configuration in defining 
neighbourhoods. The study found that the associations were 
influenced by the scale extent chosen to reflect the built environment’s 
connection to walking. The land use mix indices showed a stronger 
association with walking at a smaller spatial extent (400-800-meters 
network buffer), while the density and network connectivity indices 
showed a stronger association with walking as spatial scale increased 
(1200-1600-meters network buffer). In a different study, Wei et al. 
(2016) found that, with the 800-m network buffer defined as the 
neighbourhood, the walkability index (a combination of intersection 
density, land use mix, and residential density) can alone explain 
about 15% of the variance of physical activity, including walking. 
However, Clark and Scott (2014) found that the 200-meter buffer 
had the highest variance explained by built environment factors, 
such as density, land use mix, and connectivity, while the 400-meter 
buffer had the weakest association. 

Other studies tried to explore the impact of age group on this 
association. For example, Villanueva et al (2014) used several age 
groups within varying neighbourhood buffers (200 m, 400 m, 800 m, 
and 1600 m). The results showed that although only the 200 m buffer 
was able to explain the walking behaviour of younger adults (aged 
18-29 years), neighbourhood walkability was positively associated 
with walking regardless of life stage and geographic unit. In contrast, 
Mitra and Buliung (2012)found that the buffer size had a significant 
impact on children’s walking behaviour to school at 400 m, while 
Van Loon et al. (2014)British Columbia and the surrounding lower 
mainland region (n=366 found this effect at a larger buffer size 
(1600 m).

However, the lack of standardization may pose a serious challenge 
when it comes to comparing and combining evidence across studies 
(Learnihan et al., 2011). In addition, selecting the most relevant 
geographic scales within which built environments can affect 
walking behaviour is a significant step in translating research into 

urban design and public health practice (Javad et al., 2013). For 
instance, evidence showing that proximity to commercial retail or 
open spaces within a neighbourhood is associated with more walking 
is useful but not sufficient for urban designers or environmental 
policy makers. Information on the optimal distance that these 
facilities need to be located from residents for better walkable design 
is crucial. In other words, a better understanding of the geographic 
scales and distances at which built environments influence walking 
may better inform urban design and policy interventions (Koohsari 
et al., 2013;  Learnihan et al., 2011). 

In an effort to define an optimal geographical neighbourhood, the 
aforementioned studies generally propose that larger scales are 
more suitable for detecting the influence of the 5 Ds of the built 
environment on walking behaviour (Mavoa et al., 2019; Gehrke & 
Clifton, 2014). However, in the context of Malaysia, this perspective 
prompts an intriguing inquiry due to the tendency for unfavourable 
weather conditions to lead to shorter distances being walked 
(Ramakreshnan et al., 2020). Consequently, this factor results in a 
smaller buffer of investigation. The reported walking distances of 
200 meters and 240 meters in Malaysia by Azmi and Karim (2011) 
and Qureshi (2016), respectively, are notably shorter compared to 
the commonly employed 400m and 600m distances often used as 
benchmarks in research related to public health, transportation, and 
urban planning. This distinction holds regardless of walking type or 
population characteristics (Moudon et al., 2006; Feng et al., 2010).

Given these considerations, this study aims to provide insights into 
the impact of the 5Ds of the built environment on pedestrian volume 
at multiple network buffers. Of particular significance is its focus 
on Malaysia, where shorter walking distances, influenced by the 
tropical climate, present unique challenges for promoting active 
transportation. Understanding these associations in such contexts is 
vital for informing research regarding neighbourhood walkability 
and the size of geographical units that should be applied to calculate 
GIS walkability indices. This will be relevant for researchers, 
practitioners, and policymakers who aim to promote healthy 
neighbourhood environments and encourage physical activity.

2.	 METHODOLOGY 

This study adopts a quantitative approach based on cross-sectional 
data to understand the influence of scale variation on the association 
between the 5Ds of the built environment and walking volume. Data 
were collected from various sources (as described under each heading 
below) and operationalized using GIS. Subsequently, the data were 
linked to the geographic locations of 2,392 housing units within the 
study area, and compared across four different geographical scales 
(240m, 400m, 600m, and 1000m). 

2.1  Study site
The study was conducted in Putrajaya, Malaysia’s new federal 
government administrative centre situated 25 kilometres south of 
Kuala Lumpur. According to the Department of Statistics (https://
www.dosm.gov.my), the estimated population of Putrajaya is 
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113,832.However, Putrajaya was chosen due to the abundance 
of micro-level features that actively promote walkability, such as 
walkways, crosswalks, street lighting, street furniture, and greenery 
(Azmi & Karim, 2012). This is a critical aspect for this study because 
it allows for effective control of the influence of micro-level features, 
enabling a more isolated examination of the specific role played by 
the 5Ds (macro-level features) in promoting walkability.

This study focuses on two residential precincts, Precinct 9, Precinct 
11 (see Figure 1a). The selection assumed that neighbourhoods with 
higher density are likely to have denser commercial land use and 
more recreational sites, given the adequate population to support 
such amenities. The study analysed a total of 2,393 housing units 
across the two precincts (Figure 1b).

2.2  Neighbourhood unit 

The distances selected for the study were informed by various 
sources: Qureshi (2016) and Azmi & Karim (2011) suggest that 
pedestrians in Putrajaya typically walk up to 240 meters before 
resorting to driving. However, 400 meters and 600 meters are 
commonly used in public health, transportation, and urban planning 
research in addition, the structure plan of Putrajaya adopts 400 
meters (or 5 minutes) as a walkable distance to community facilities. 
However, some trips may exceed 1000 meters (Houston, 2014). The 
distances conceptualization is summarized in table1.

In this study, neighbourhood borders were delineated by applying 
multi-buffer network areas around each housing unit within 
precincts 9 and 11, encompassing semi-detached and high-rise, 
high-density units. Buffers with radii of 240, 400, 600, and 1000 
meters were created around each unit using the QNEAT3 extension 
within the QGIS program, as illustrated in Figure 2. Road network 
data, including pedestrian-only paths, was sourced from Open Street 
Map (OSM), while inaccessible streets were excluded from analysis.

Table 1: Conceptualization of selected distances. 
Distance Description Source     Example 

240 meters Average distance 
pedestrians in 
Putrajaya walk before 
driving. 

Qureshi, 2016, pp3; 
Azmi & Karim, 
2011

Optimized bus stop locations for 
walking access (Taplin & Sun, 2019)

400 meters Commonly used 
walkable distance 
in research studies 
for public health, 
transportation, and 
urban planning

Walkable distance to 
community facilities 
as per the Structure 
Plan of Putrajaya      

Moudon et al., 
2006; Feng et al., 
2010, Azmi & 
Karim, 2011

Walking accessibility to 
neighbourhood open space in Hong 
Kong (Tang et al., 2020)

600 meters Commonly used 
walkable distance in 
walkability studies 
for public health, 
transportation, and 
urban planning  

Moudon et al., 
2006; Feng et al., 
2010

Walking threshold in Zhejiang 
University, China (Mu & Lao, 2022)

≥1000 
meters

Possible distance for 
some pedestrian trips

Houston, 2014 Community Life Circle (15min-
CLC) in Shanghai (Wu et al., 2021)

2.3  Data collection 

Figure 1: a) Heatmap illustrating the distribution of residential density in 
Putrajaya city, demonstrating a notable concentration of high residential 
density in the study area. Data was obtained from PLAN Malaysia. b) Spa-
tial Distribution of the 2392 Housing Units included in this study (P 9.11). Figure 2: Neighbourhood Boundaries for a Residential Unit in Precinct 9 

with Road Data from Open Street Map (OSM).
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2.3.1  Pedestrian count 

This study models pedestrian count as a function of the 5Ds of 
the built environment, validated by prior research (Penn et al., 
1998; Raford & Ragland, 2004; Liu & Griswold, 2009; Ewing 
et al., 2016; Sanders et al., 2017; Park et al., 2019; Singleton 
et al., 2021), achieving significant model fits (R² or pseudo-R² 
= 0.98, 0.77, 0.75, 0.52, 0.76, 0.71, 0.49 respectively). Using 
a modified version of Penn and Dalton’s (1994) protocol, 123 
observation gates were placed on tertiary and residential streets 
with pedestrian walkways.

Counts were taken by stationary observers at the midpoint of each 
street segment during three observation periods (morning 8-10 
a.m., evening 4-6 p.m., and 6-8 p.m.) over two weekdays and 
one weekend day per area, resulting in 30 minutes of observation 
per segment. Observations were made in similar weather 
conditions between August and September 2021, avoiding rainy 
days, with an average maximum daytime temperature of 32.0°C 
(89.6°F). The mean pedestrian volume for each street segment 
was calculated and aggregated by observation time slots. An 
interpolation process estimated values for remaining areas, and 
results were clipped to predefined neighborhoods, with data 
exported as CSV for statistical analysis.

2.3.2  5Ds of built environment 

Five built environment attributes—Density, Diversity, Design, 
Destination accessibility, and Distance to transit—were 
calculated for each unit within four scale definitions (240, 400, 
600, and 1000 meters). Data on density and diversity came from 
the Integrated Land Use Planning Information System (I-Plan 
Geoportal) 2022, provided by the Department of Town and 
Country Planning of Malaysia. The main shapefile contained 
land cover information categorized into 38 classes, which 
were reclassified into five land uses: residential, commercial, 
recreational, education, and institutions. These land uses were 
then clipped to the catchments across different scales. 

2.3.2.1  Density 

was presented by two measures:  net residential density 
(the number of residences unit per residential hectares), and 
Residential land use density (the ratio of residential land use to 
the total catchment area).

2.3.2.2  Diversity 

was calculated by two land use mix indexes as following: 

•	 Entropy index:  was computed based on Frank’ formula 
(Frank et al., 2010) considering five land uses: residential, 
commercial, office, institutional /education, and recreation, 
the index was calculated using the next formula:

                                                                   were 

n: Number of land-use clusters. 

Pij: Number of property assessment units i in zone j. 

Pj: Sum of property assessment units 1 to, n in zone j. 

Entropy Index varies between 0 and 1 where:  

0 = Maximum specialization. 

1 = Maximum diversification

•	 Herfindahl-Hirschman Index: H-HI was calculated by 
summing the squared proportions of each land use category, 
where the high value of HHI indicates a low level of land use 
mix and vice-versa,

H-H Index =                                                        were 

Pi: Percentage of land use type i 

n: Total number of land uses

2.3.2.3  Design  

Design was presented by three measures: 1. street connectivity 
(number of true intersections / km2 of land area) 2. Street density 
(the total length of streets per unit area); 3. Block size (the Total land 
area / Number of blocks).

2.3.2.4  Destination accessibility 

Including transit, was measured as a street network distance from 
a housing unit to the closest destination of a specific type (along 
the street). The data on the location of facilities was obtained from 
map of Putrajaya land uses. while data on the street network used to 
calculate distances was obtained from Putrajaya’s OSM (Open Street 
Map). Multiple processes were used to measure network distances. 

The first step was to use the Qneat3 plugin to perform an 
interpolation analysis within Q-GIS to convert the vectorial maps 
of the destinations into a single network distance raster containing 
information about network distances to the destinations. This 
process was 

repeated for each destination to gain an understanding of each 
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on the correlation results. Additionally, a correlation coefficient 
matrix was used to determine the relationship between pedestrian 
counts at four different scales of analysis (240, 400, 600, and 1000 
meters) and the four considered walkability indices: the Frank index, 
the Habibian index, and the urban walkability index.

Secondly, the association between built environment attributes and 
walking volume was modelled using negative binomial regression 
(NBR) to account for the positively skewed count data. The 
pedestrian volume of each catchment area was measured as the 
mean number of walkers in different street segments within the area.

This study uses z-scores of all exposure measures to rescale the 
heterogeneous units of data and allow comparison between models. 
Therefore, coefficients represent the deviation from the data 
centre (mean), and exponential beta (Exp-b) values were added to 
standardize the interpretation of coefficients.

3.	 RESULTS

3.1  Descriptive summary
A total of 2393 housing units were included in the final analysis. 
The walking volume and 5Ds attributes surrounding each unit were 
aggregated across four scales. As described in Table 2, different 
scale changes had varying impacts on the study variables. Pedestrian 
volume, represented by the average workday/weekend pedestrian 
count, increased significantly as the scale of analysis increased, from 
18.43 pedestrians per catchment area at 240m to 279.93 pedestrians 
per catchment area at 1000m. Similarly, diversity measures such as 
the entropy index of mixed land use increased with scale expansion, 
owing to the inclusion of more land uses in the catchment area.

On the other hand, density measures such as gross residential density 
decreased as the scale of analysis increased, going from a mean of 
10.46 units per hectare at 240m to 4.76 units per hectare at 1000m. 
A similar pattern was observed for design measures; for instance, at 
the 240m scale, there were 5.13 intersections per unit, while at the 
1000m scale, 4.65 intersections per unit could be found.

Regarding destination accessibility, the network distance to various 
types of destinations (schools, recreation areas, commercial 
centres, offices, and bus stops) remained consistent across all scales 
of analysis, with an average value of around 700 meters. This 
consistency is expected because the distances were measured based 
on fixed number of destinations. This implies that an increase in 
catchment size does not lead to any changes in the distances from 
the housing unit to the intended destination. 

Figure 3: Conversion of network distance raster values to points using 
sample raster values to calculate distances to commercial, transport.

accessibility grouping, The second step was to compute the network 
distance between each residential unit and the nearest destination 
by converting the network distance raster values to points using 
the sample raster values. This process produced maps containing 
residential points weighted according to the distances (Figure 3). 
The next histogram illustrates the distribution of distances in the 
studied area (Figure 4). 

2.3.3  Data analysis 

Figure 4: The resulting histogram displays the mean distances to 
commercial and transport des

This study first used Spearman’s Correlation Coefficient to define 
the correlation between the attributes of the built environment, 
namely Density, Diversity, Design, and Destination accessibility, 
at the selected scales of analysis: 240, 400, 600, and 1000 meters. 
However, certain sub-variables were omitted from the analysis based 
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Table 2: Descriptive statistics of dependent and independent variables (stratified by scale).
Scales of analysis

240M 400M 600M 1000M

Variables 	 Sub-variables Total (n = 2393) Total (n = 2393) Total (n = 2393) Total (n = 2393)

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Density

Gross 
Residential 
density 

10.46 10.44 4.52 8.82 8.78 3.92 7.31 7.10 3.28 4.76 4.72 1.54

Residential 
land ratio 

0.43 .42 .11 0.37 0.38 0.09 0.33 0.33 0.08 0.26 0.25 0.051

Diversity

Entropy index .00 .05 1.00 0.77 0.77 0.07 0.79 0.79 0.080 0.82 0.84 0.07

H_H index 3670.81 3580.06 894.6 3305.98 3312.60 558.60 2971.50 2978.36 423.21 2598.09 2481.37 315.34

Design

Intersection 
density 

5.13 4.35 2.98 4.99 4.38 2.18 4.78 4.31 1.57 4.65 3.98 1.87

Street density 263.99 251.09 56.70 257.76 253.49 46.68 241.74 246.58 34.67 223.15 221.85 34.21

Block size 828.67 173.26 3103.89 818.64 213.99 3091.47 606.92 268.54 2240.50 431.70 377.35 212.73

Destination accessibility

 Network 
distance to 
school

744.97 722.92 357.45 744.97 722.92 357.45 744.97 722.92 357.45 744.97 722.92 357.45

Network 
distance to 
recreation

364.35 306.58 260.70 364.35 306.58 260.70 364.35 306.58 260.70 364.35 306.58 260.70

Network 
distance to 
commerce

700.03 589.58 400.24 700.03 589.58 400.24 700.03 589.58 400.24 700.03 589.58 400.24

Network 
distance to 
offices

913.23 848.25 443.25 913.23 848.25 443.25 913.23 848.25 443.25 913.23 848.25 443.25

Network 
distance to 
transport

495.65 454.04 238.51 495.65 454.04 238.51 495.65 454.04 238.51 495.65 454.04 238.51

Average 
distance

643.65 586.38 243.99 643.65 586.38 243.99 643.65 586.38 243.99 643.65 586.38 243.99

Pedestrian volume 

Average_
workday/
weekend 
pedestrians 

18.43 12.00 17.63 50.46 37.00 44.87 111.43 80.00 99.05 279.93 215.00 196.43



8

Volume 17 (Issue 2) December 2024

3.2  The impact of MAUP
The study examined the relationship between 5Ds attributes 
(Density, Diversity, Design, Destination accessibility, and Distance 
to transit) measured at four geographical scales (240, 400, 600, 
and 1000 meters) and walking volume to assess the effects of the 
Modifiable Areal Unit Problem (MAUP). Correlation analysis 
revealed fluctuations in land use measures as the scale changed. For 
instance, measures of density (net and gross residential density) and 
the entropy index of land use showed a shift in coefficient direction 
from 240 to 1000 meters (Table 3), likely due to limited land use 
variation in smaller buffers.

Walking volume negatively correlated with the average distance to 
all destinations, including commercial areas and schools, but showed 
a weaker association with parks and bus stops. This suggests that 
in Putrajaya, people prioritize walking to commercial destinations 
over recreational destinations or bus stops, with peak correlation 
observed within the 400 to 600-meter range (Table 3) . For design 
measures, street connectivity metrics showed a consistently 
increasing correlation with walking volume as the scale expanded, 
with the strongest association observed at 1000 meters.

Table 3: The correlation between 5Ds measures and walking volume across 
the scales of analysis.

Scale of analysis

Built environment 
attributes

240m 400m 600m 1000m

Gross Residential 
density -0.244** -0.192** 0.033** 0.479**

Residential land ratio -0.188** -0.263** -0.144** -0.09**

Intersection density 0.242** 0.31** 0.376** 0.651**

Street density 0.243** 0.256** 0.327** 0.645**

Block size 0.1* 0.145** 0.084** 0.488**

Entropy index -0.02 -0.002 0.161** 0.414**

H_H index -0.263** -0.257** -0.239** -0.453**

distance to offices -0.161** -0.273** -0.275** -0.239**

distance to school -0.198** -0.33** -0.312** -0.333**

distance to recreation -0.23** -0.118* -0.06* -0.017**

distance to commerce -0.37** -0.457** -0.49** -0.403**

distance to transport -0.128 -0.103* -0.039** -0.057**

Average distance -0.371** -0.486** -0.473** -0.422**

Correlation is significant at ** p<0.01. * p<0.05, p>0.05 level (2-tailed)

3.3  Impact of 5Ds 
A negative binomial model was used to evaluate the impact of the 
combined 5Ds on walking volume across various scales. The fully 
adjusted models (see Table 4) show significant likelihood ratio 
statistics (772.9, 923.9, 1070.4, 1051.0), indicating a robust fit 
compared to a null model with only intercept terms. Model 3, with 
a likelihood ratio of 1070.4 and 10 degrees of freedom (df), had 
the highest value, and a McFadden’s R² of 0.049, highlighting the 
significant impact of the 5Ds at a 600-meter scale.

Analysing each attribute separately, the average distance to all 
destinations consistently negatively impacted walking volume 
at all scales (240, 400, 600, 1000 meters), with coefficients of 
-0.651, -0.799, -0.867, and -0.626, respectively. At the 600-meter 
scale, an increase of one unit from the mean distance results in a 
-0.867 decrease in pedestrian traffic, indicating shorter distances to 
destinations like recreation, schools, and retail increase pedestrian 
volume at the neighbourhood level.

Street density had a consistently positive impact on walking volume 
at all scales (240, 400, 600, 1000 meters), with coefficients of 0.312, 
0.252, 0.162, and 0.310, respectively (see Table 4). At the 240-meter 
scale, an increase of one unit in street density is associated with 
an increase of 0.312 pedestrians. Additionally, the number of 
intersections positively impacted walking volume, especially at 
the 600-meter scale, where an increase of one unit in its mean is 
associated with a 0.170 increase in pedestrian count. These results 
show that neighbourhoods with longer and more connected streets 
are more pedestrian-friendly.

Regarding density constructs, the residential land ratio consistently 
showed a positive impact on walking volume across all scales (240, 
400, 600, and 1000 meters), with coefficient values of 0.168, 0.422, 
0.465, and 0.231, respectively (see Table 4). At the 600-meter scale, 
increasing one unit from the mean residential land ratio contributes 
0.465 more pedestrians. This indicates that denser residential lands 
are associated with more walking activity, as high density leads to 
compact land development, more diverse land uses, and shorter 
travel distances between origins and destinations.
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Table 4: Negative binomial regression model results for pedestrian counts
Model.1 (240m) Model.2 (400m) Model.3 (600m) Model.4 (1000m)

Coef. (Std. 
Error)

B Exp
(B)

Wald 
Chi-

Square

Coef. (Std. 
Error)

B Exp
(B)

Wald 
Chi-

Square

Coef.  (Std. 
Error)

B Exp
(B)

Wald 
Chi-

Square

Coef. 
(Std. 

Error)

B Exp
(B)

Wald 
Chi-
Square

Constant 2.738***
(0.0213)

15.452 3.721***
(0.0208)

41.299 4.487***
(0.0206)

88.829 5.414***
(0.0205)

224.550

5ds Residential 
land ratio

0.168***
(0.0479)

1.183 12.303 0.422***
(0.0393)

1.525 114.961 0.465***
(0.0370)

1.592 157.946 0.231***
(0.0357)

1.259 41.840

Gross 
Residential 
density

-0.219***
(0.0301)

0.803 52.913 -0.390***
(0.0370)

0.677 111.095 -0.327***
(0.0446)

0.721 53.664 -0.192***
(0.0393)

0.825 23.954

Intersection 
density

-0.052*
(0.0403)

0.949 1.666 0.081**
(0.0408)

1.084 3.955 0.170***
(0.0481)

1.186 12.513 0.095*
(0.0743)

1.099 1.626

Street 
density

0.312***
(0.0379)

1.366 67.647 0.252***
(0.0390)

1.286 41.495 0.162***
(0.0472)

1.176 11.763 0.310***
(0.0684)

1.363 20.528

Block size 0.040*
(0.0298)

1.041 1.840 -0.055**
(0.0268)

0.947 4.155 -0.123***
(0.0232)

0.885 28.022 -0.107**
(0.0424)

0.898 6.382

Entropy 
index

-0.180***
(0.0354)

0.835 26.023 -0.142***
(0.0298)

0.868 22.649 0.094***
(0.0364)

1.098 6.639 0.142**
(0.0617)

1.133 5.330

H-H index -0.680***
(0.0590)

0.507 132.996 -0.637***
(0.0434)

0.529 216.002 -0.305***
(0.0420)

0.737 52.942 -0.381***
(0.0613)

0.683 38.625

Distance to 
commerce

0.335***
(0.0448)

1.398 55.940 0.362***
(0.0494)

1.437 53.768 0.343***
(0.0517)

1.409 44.004 0.496***
(0.0570)

1.642 75.754

Distance to 
transport

0.231***
(0.0330)

1.260 48.984 0.417***
(0.0335)

1.517 155.169 0.525***
(0.0322)

1.690 266.105 0.173***
(0.0301)

1.189 32.914

Average 
distance

-0.651***
(0.0469)

0.521 192.508 -0.799***
(0.0457)

0.450 304.829 -0.867***
(0.0463)

0.420 350.343 -0.626***
(0.0482)

0.535 168.395

Likelihood 
ratio statistic 
(df)

772.9(10) 923.9(10) 1070.4(10) 1051.0(10)

AIC 18108.911 22697.922 26317.153 30719.574
BIC 18172.495 22761.505 26380.736 30783.153

McFadden’s R 0.03 3 0.041 0.049 0.047
N. of 
observations

2393 2393 2393 2393

Standard errors are in parenthesis *** p<0.01, ** p<0.05, * p<0.1.

Conversely, residential density measured as the average number of 
units per hectare negatively impacts walking volume at all scales, 
with coefficients of -0.219, -0.390, -0.327, and -0.192. This suggests 
that increasing the number of housing units is associated with a 
decrease in pedestrian numbers. The disparity might be due to 
methodological differences, as housing units are evenly distributed 
across the neighbourhood, making it harder to detect variations.

Table 3 also shows that the H-H index consistently negatively 
impacts pedestrian traffic volume across all scales (240, 400, 600, 
and 1000 meters), with coefficients of -0.680, -0.637, -0.305, and 
-0.381, respectively. For example, an increase of one unit in the 
mean H-H index results in a decrease of -0.680 pedestrians at the 
240-meter scale. The H-H index measures the concentration of land 
use mix, where lower values indicate higher diversity, suggesting 
that increased land use mix correlates with higher pedestrian activity. 
The entropy index shows a consistent but weaker negative impact on 
pedestrian traffic volume. At the 1000-meter scale, an increase of 
one degree in the mean entropy index is associated with a decrease 
of 0.142 pedestrians (see Table 2).

4.	 DISCUSSION 

The results revealed that the direction and relationship of walkability 
variables and walking volume depend on the scale of the built 
environment under examination. Specifically, indices representing 
land use compositions demonstrated sensitivity to the delineation of 
boundaries and exhibited a robust relationship at a broader spatial 
extent. In contrast, street-related measures such as connectivity and 
distance, sustained a stronger association even at smaller scales. The 
study also suggested that a 600-meter network scale may be the most 
appropriate for identifying the association between 5Ds combination 
and pedestrian counts in residential neighbourhoods. 

These findings have specific significance for assessing neighbourhood 
walkability in tropical environments. Unpleasant weather conditions 
often lead to shorter walking distances (Ramakreshnan et al., 2020), 
resulting in a smaller buffer of investigation. Selecting the best 
walkability assessment combinations, such as the Walkability Index 
(Frank et al., 2010), Urban Walkability Index (Glazier et al., 2012), 
or Habibian’s Walkability Index (Habibian & Hosseinzadeh, 2018) 
(see Table 5), need to account for their individual components and 
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weights to fit the scale of the analysis. As proven by this study, some 
built environment components, namely land use mix and density, 
do not reflect the real level of pedestrian volume at small scales. 
Therefore, combinations prioritizing street-related measures, such 
as connectivity and distances to various facilities, as indicators of 
walkability, may offer a more effective explanation for walking within 
small buffers. To illustrate this, when comparing these indexes using 
a 400 m network buffer, the commonly used Frank Index (primarily 
a combination of 3 land use component and street connectivity, see 
table 1) exhibited weaker associations with walking volume (r = 
0.37, p < 0.01) (Figure 5) compared to the other two indexes, which 
prioritizing proximity components (Urban Walkability Index: r = 
0.42, Habibian’s Walkability Index: r = 0.45, p < 0.01) 

Table 5: Conceptualization of included walkability indices based on 5Ds 
combination
GIS-based 
index 

Author Measures Operational 
way 

formula

Frank’s 
walkability 
index 

(Frank et al., 
2005)
(Frank et al., 
2010)

-Net residential 
density 
-Intersection 
density 
-Land use mix 
-Retail floor 
area ratio

z- score Walkability = (2 
×z-intersection 
density) + (Z-net 
residential density) 
+ (Z-retail floor 
area ratio) + 
(Z-Entropy index)

Habibian’s 
walkability 
index 

(Habibian & 
Hosseinzadeh, 
2018)

-Design indices
-Diversity 
indices 
-Density 
indices 
-Destination 
indices 

Linear 
regression, 
correlation 
analysis, 
principal 
components 
analysis, 
Z-score 

Walkability = 
β1Ẓ1j + β2Ẓ2j + 
β3Ẓ3j + β4Ẓ4jw

Urban 
walkability 
index 

(Glazier et al., 
2012)

-Dwelling 
density 
-Population 
density
-Proximity 
to retails and 
services
-Street 
connectivity 

Factor 
analysis; 
Principal 
components
analysis

Walkability = 
Ɩ1(Dwelling 
density) + 
Ɩ2(Population 
density) + Ɩ3(Street 
connectivity) + 
Ɩ4(Availability 
of all retail and 
services) [ Ɩ is the 
value of factor 
loading]

0.37*** 0.42 *** 0.45***

0.86 *** 0.49***

0.78***

When examining the impact of each component of the 5Ds 
on walking volume, shorter distances to destinations such as 
recreation, schools, and retail locations are associated with 
increased pedestrian volume at the neighbourhood level. This 
association is most prominent at the 600-meter scale, indicating that 
interventions aimed at increasing destination accessibility within 
this distance range could have a significant impact on promoting 
walking behaviour in our study area. However, these findings 
challenge prior studies that suggested 200 and 240 meters as the 
threshold distance for Putrajaya residents to walk before choosing 
to drive (Azmi & Karim, 2011; Qureshi, 2016, respectively), this 
disparity can primarily be attributed to the mismatch between 
objective and perceived methods of assessing distances (Koohsari 
et al., 2014). 

The study also asserted that commercial destinations, such as retail 
stores and grocery markets, have a stronger impact on walking 
volume than transportation destinations, such as bus stops, at all 
geographical scales. This suggests that incorporating transport 
destinations as a neighbourhood walkability index, should consider 
the land-use zone (e.g. residential, commercial, industrial) (S. 
Lee et al., 2020), thus, researchers on residential neighbourhood 
may reconsider the emphasis on transportation infrastructure in 
assessing walkability, and instead prioritize the assessment of 
neighbourhoods distances to a variety of commercial destinations.

When we look at design measures, intersection density showed a 
stronger positive impact on walking volume than street density and 
block size at all scales, specifically at the 600-meter street network 
buffer. Consistent with previous research (Ellis et al., 2015; Molaei 
et al., 2021), our study suggest that intersection density offers the 
best measure of connectivity related to walking activity when 
using the footpath network. Although each measure of connectivity 
captures slightly different aspects of the broader concept, indeed, 
intersection density is the measure most closely associated with 
walkability. Additionally, the 600m network buffer (which 
equates to a 7–8-minute walk) around residential addresses is far 
more predictive of active travel in residential neighbourhoods. 
This implies that people living in areas with a higher density of 
connected footpaths within a 600m radius around their home are 
more likely to engage in active travel. 

On the other hand, land use-related measures such as residential 
density and land use mix showed a fluctuating pattern across 
scales. The impact of residential density peaked at a scale of 600m, 
whereas the entropy index had a greater impact at the largest scales 
(1000m). These results are similar to those of  Wei et al.s’ (2016) 
study, which confirmed the validity of scales in the range of 800m 
to 1600m network buffer in detecting the association between land 
use mix and walking. The limitations of disaggregated land use 
measures in predicting walking at small scales have been noted in 
previous studies (Gehrke & Clifton, 2014; Clark & Scott, 2014; 
Gehrke & Wang, 2020; Liao et al., 2020). However, the impact 
of land use mix measured using the Herfindahl-Hirschman Index 
(HH) was impactful at the smallest scale (240m).
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In general, the HH index tends to be more sensitive to changes in 
the dominance of specific land uses, while the entropy index is more 
sensitive to changes in the evenness of land use distribution. In this 
context, the dominance of certain land use types (e.g., commercial 
and retail) has a stronger influence on walking activity than the 
evenness of the distribution of land uses. This could explain why the 
HH index has a stronger impact on pedestrian traffic volume than 
the entropy index. This suggests that methodological differences in 
land use measurement could impact the association between land use 
mix and walking behaviour. Moreover, it highlights the importance 
of carefully considering the spatial scale when measuring land use-
related factors that influence walking behaviour. 

This study has two limitations. Firstly, the maximum buffer scale 
was 1000m, yet the regression analysis indicates that larger scales 
may alter the association between the built environment and 
walking. As demonstrated, the impact of most 5Ds and syntactic 
metrics on walking volume increased with scale, suggesting that 
scales beyond 1000m could be appropriate for detecting these 
associations. However, previous research indicates that expanding 
the scale may reduce heterogeneity which may lead to difficulty in 
detecting an effect (Dollman et al., 2009; Thornton et al., 2012). 
Secondly, regarding exposure variable data, the study did not 
differentiate between residents and visitors or between types of 
walking (utilitarian vs. recreational), which is critical as different 
motivations for walking may result in different associations with the 
built environment. Additionally, pedestrian data were interpolated in 
Q-GIS, potentially introducing estimation errors due to predicting 
values from limited sample points.

5.	 CONCLUSION 

This study investigates how the definition of a neighbourhood can 
impacts the magnitude of associations between built environment 
attributes and walking volume. The study found that while the 
association was consistent across various scales for all built 
environment measures, smaller neighbourhoods were less likely to 
exhibit these associations. Notably, the most suitable neighbourhood 
definitions for detecting associations were the 600-m road network 
buffers. These findings highlight the importance of considering the 
appropriate geographical scale when conducting research on the 
built environment and walking within residential neighbourhood. It 
also emphasizes the need for further evidence to identify the most 
appropriate neighbourhood scales for different built environment 
measures, outcome measures, scales, and neighbourhood definitions. 
Given the difficulty in identifying a single optimal neighbourhood 
definition, future work should aim to identify a range of appropriate 
neighbourhood definitions to accommodate the diverse nature of 
communities. Furthermore, future research should incorporate a 
greater range of scales, particularly larger scales (>600), to enhance 
our understanding of the relationship between built environment 
attributes and walking. This will enable the development of more 
effective interventions that promote physical activity, enhance 
community well-being and help address the rising public health 
concerns of physical inactivity and sedentary lifestyles.
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