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Abstract: Nitrogen (N) management is important in sustaining oil palm production. Remote sensing based 
approaches such as spectral index has promise in assessing the N nutrition content of many crops. The 
objectives of this study are to examine the N classification capability of three spectral indexes (SI): visible 
(Vis), near infrared (NIR) and a combination of visible and NIR (Vis+NIR) using data from the SPOT-6 
satellite. N treatments varied from 0 to 2 kg per palm and were applied to both mature palms. The N-
sensitive SIs tested in this study were age-dependent. The Vis index such as BGRI1 (CVA= 79.55%) and the 
Vis+NIR indices such as NDVI, NG, IPVI and GNDVI (CVA= 81.82%) were the best indices to assess N status 
of young and prime mature palms through the SVM classifier. Nonetheless, the SVM classifier showed 
promising potential in classifying foliar N content of mature palms that can possibly be used further for 
developing a new index in assessing N content of oil palms.  
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INTRODUCTION  
 
To our knowledge, nutrient assessments concerning oil palm is not well studied. Asraf, Nooritawati, and 
Rizam (2012) has manipulated support vector machine (SVM) for classifying N, P, and magnesium (Mg) 
status of oil palm nutrition on foliar samples, obtaining accuracies of 97.8%, 87.2%, and 100%, 
respectively. Recently, Amirruddin, Muharam, and Mazlan (2017) evaluated data mining approaches, i.e. 
SVM and linear discriminant analysis (LDA) for discrimination of the sensitive spectral bands and 
classification of the N status of multiple oil palm ages, using a handheld spectroradiometer. The authors 
reported that the discriminant analysis (DA) produced higher accuracies (73-97%) compared to SVM in 
assessing N status of all ages of palms, yet the latter yielded reasonable accuracy ranges between 71-88% 
with a lesser number of spectral bands. These most recent studies, nevertheless, employed ground based 
sensors such as a digital camera and a spectroradiometer that still requires extensive and expensive 
ground sampling. Bearing in mind that oil palm plantations involve vast cultivation areas, evaluation via 
platforms such as satellites is required. Earlier in 2003, Nor Azleen et al. (2003) tested a limited number 
of spectral indices generated from the SPOT satellite; and used the normalised difference vegetation index 
(NDVI), soil adjusted vegetation index (SAVI) and atmospherically resistant vegetation index (ARVI). They 
reported that only SAVI performed the best with an accuracy of R2 = 0.91. Nonetheless, this study was 
conducted on 23 your old oil palms that are close to replanting age, and therefore did not represent the 
ideal assessment of N foliar status. 
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In the light of current evaluations of oil palm N status of which a limited number of spectral indices and 
data mining were tested, we formulated our study to achieve a specific objective as that is to assess the 
performance of spectral indices generated from the visible (Vis), near infrared (NIR) and combination of 
visible and NIR bands (Vis+NIR) derived from SPOT-6 for N classification of mature oil palms. 
 
METHODS 
 
The experiment involved Tenera palms cultivated in two different fields representing different ages: 9 
years (MP05; 2.377779°N and 102.265658°E) and 12 years (MP02; 2.380374°N and 102.238012°E) in 
Melaka Pinda Estate, United Malacca Berhad plantation in Melaka, Malaysia. Samples represented young 
mature and prime mature palms. To induce differences in foliar N contents, N treatments were applied in 
3 rates: 0, 1 and 2 kg N per palm. The treatments were replicated three times and arranged in Randomized 
Completely Block Design (RCBD) to result in eighteen experimental subplots comprised 16 uniform palms 
each. N treatments were assigned randomly to these experimental subplots. Ammonium chlorite (AC) 
was applied as the source of N around the weeding circle in four split applications made in November 
2013, and March, Jun and September 2014. To ensure optimum plant growth, phosphorus (P), potassium 
(K), magnesium (Mg) and boron (B) were applied uniformly as single fertilisers based on the following 
rate: 0.049 kg, 0.467 kg, 0.054 kg and 0.004 kg, respectively.  

 
Eight oil palm stands in each subplot were sampled during the field campaign. Six leaflets from frond 17 
for each palm sample were analysed for foliar N content by applying the wet digestion method following 
Miller and Miller (1948). The solutions then were placed in an auto-analyser machine to measure N 
content. Based upon von Uexkull and Fairhurst (1991), there were only two levels of leaf N threshold 
available for this study: deficient (<2.3%) and optimum (2.4 – 2.8 %). 320 and 50 of the samples collected 
from young mature oil palms were classified as deficient (2.01 % ± 0.16) and optimum (2.33 % ± 0.07), 
respectively. On the other hand, for the mature tree samples, 680 and 273 of the samples were deficient 
(2.10 % ± 0.14) and optimum (2.41 % ± 0.10), respectively. 
 
A satellite image was obtained from a SPOT-6 pan-sharp image with 1.5 m spatial resolution on 20th 
November 2014. The imagery underwent pre-processing such as atmospheric correction, geometric 
correction and cloud masking. Finally, the digital numbers were converted to the reflectance using an 
equation proposed by Coeurdevey and Soubirane (2013). 
 

The indices tested for this study were calculated following Table 1. In this study, the indices were 
evaluated individually rather than as subsets of spectral indices. 
 
Table 1: A summary of indices evaluated in this study. 

 

Index Name Acronym Equation Reference 

Vis indices 

Single blue Blue B 
Mercado-Luna et al. 
(2010) 

Single green Green G 
Mercado-Luna et al. 
(2010) 
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Single red Red R 
Mercado-Luna et al. 
(2010) 

Redness index RI (R–G)/(R+G) 
Escadafal and Huete 
(1994) 

Vegetation index green VIG (G–R)/(G+R) Gitelson et al. (2002) 

Blue green index 

BGI1 B/G 
Patane and Vibhute 
(2015) 

BGI2 G/B 
Auearunyawat et al. 
(2012) 

Green red index GRI G/R Adamsen et al. (1999) 

Blue red index BRI R-B 
Kawashima and 
Nakatani (1998) 

Blue green red index 

BGRI1 G/(R+B) 
Patane and Vibhute 
(2015) 

BGRI2 G/(R+G+B) 
Kawashima and 
Nakatani (1998) 

BGRI3 R/(R+G+B) 
Kawashima and 
Nakatani (1998) 

BGRI4 2B/(R+G+B) 
Vibhute and Bodhe 
(2013) 

NIR indices 

Single NIR NIR NIR  

Combination of Vis and NIR indices (Vis+NIR) 

Normalized difference 
vegetation index 

NDVI (NIR–R)/(NIR+R) Rouse et al. (1974) 

Normalized green NG G/(NIR+R+G) Sripada et al. (2006) 

Difference vegetation index DVI NIR–R Tucker (1979) 

Green difference vegetation 
index 

GDVI NIR–G Sripada et al. (2006) 

Infrared percentage 
vegetation index 

IPVI NIR/(NIR+R) Crippen (1990) 

Green normalized difference 
vegetation index 

GNDVI (NIR–G)/(NIR+G) 
Buschmann and Nagel 
(1993) 

Normalized near infrared NNIR NIR/(NIR+R+G) Sripada et al. (2006) 
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Simple ratio SR NIR–R 
Birth and McVey 
(1968) 

Green ratio vegetation index GRVI NIR/G Sripada et al. (2006) 

Optimized soil adjusted 
vegetation index 

OSAVI [(NIR–R)/(NIR+R+L)]×(1+L) Rondeaux et al. (1996) 

Soil adjusted vegetation 
index 

SAVI [(NIR–R)/(NIR+R+L)]×(1+L) Huete (1988) 

Normalized red NR R/(NIR+R+G) Sripada et al. (2006) 

 
For training and validating the accuracy of the trained models, N status data were separated by the ratio 
70:30, respectively, by using Waikato Environment for Knowledge Analysis (WEKA) 3.6 software (Hall et 
al. 2009). Prior to the classification, feature selection concerning significant spectral band was conducted 
on the training datasets. Furthermore, classifications were performed on the selected spectral bands 
following the previous procedure and on spectral indices highlighted in Table 1. Training accuracy (TA %) 
and cross validation accuracy (CVA %) obtained from the classifications of raw bands and indices were 
compared to find the best spectral and classification approach in determining N sufficiency levels of oil 
palms. 
 
Spectral classification in this study was based on the SVM-Recursive Feature Elimination (SVM-RFE) 
(Guyon et al. 2002), where the processes were performed using the WEKA 3.6.9 software. The 
classification is based on the principle to seek the optimum separating hyperplane (OSH) that best 
distinguishes two sufficiency classes. In seeking for the OSH, the SVM optimises C that is the penalty value 
and γ that is a predetermined smoothness parameter that controls the width of the RBF kernel. Generally, 
a large C value gives a higher penalty to classification errors, which minimises the number of misclassified 
data, whereas a small C value maximises the margin so that the OSH is less sensitive to the errors from 
the learning data set (Ivanciuc 2007). The optimisation of these two parameters was done using the Grid 
Search procedure within WEKA program by the performance of the SVM model with each pair of (C, γ). 
The optimised C and γ parameters were selected by choosing the combination pair that yielded the 
highest R2 value. 

 
RESULTS AND DISCUSSION 
 
Generally, most of the indices depicted a similar pattern in which the CVA was lower than the TA 
regardless of types of index and maturity class (Table 2 and 3). Therefore, the results and discussion were 
focused on the CVA. Overall, the classification of N status in oil palm trees using spectral index was age 
dependant because there was no single index that could classify both palm maturity classes with 
consistently high accuracy. The best indices to classify N sufficiency levels of young and prime mature 
palms were the Vis (BGRI1 and BGRI2; CVA = 79.55%) and Vis+NIR (NDVI, NG, IPVI and GNDVI, CVA = 
81.82%). According to the types of index, the finest Vis indices that could explain N variations in young 
mature palm were BGRI1 and BGRI2 (CVA = 79.55%), while RI and VIG indices (CVA = 77.27%) for prime 
mature. It is also worthy to note that regardless of palm maturity classes, the NIR index produced useful 
N classification models with CVA of 72.73%. Meanwhile, for the Vis+NIR indices, indices such as NDVI, NG, 
DVI, GDVI, IPVI, GNDVI, NNIR, SR, GRVI, OSAVI, SAVI and NR produced a similar classifying accuracy (CVA 
= 72.73%) for young mature palm, whereas the NDVI, NG, IPVI and GNDVI were beneficial for classifying 
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N variations in prime mature palms (CVA = 81.82%). Generally, as palm trees get older, the classification 
accuracies of most of the Vis indices demonstrated a declining trend, while the Vis+NIR indices depicted 
an increasing pattern. For example, the Vis index such as BGRI4 tended to decrease in accuracy as the 
palm gets older for both classifiers (72.73 to 63.64%). A similar observation also was made on the BGI1 
and BGI2 where the accuracy decreased from 72.73 to 63.64%. Nevertheless, the NDVI and IPVI index 
increased in CVA from 72.73 to 81.82%, whereas the SAVI index increased from 72.73 to 79.55% SVM. 
Likewise, a similar observation was also made on the GDVI and GNDVI index. The sensitivity of the N 
models was found to be age-dependent. These results signified the essentiality of the age factor in oil 
palm N status classification; none of the indices worked for both of the two age groups and the shift of 
the spectral region sensitive to N content to longer wavelengths as palms mature. One of the reasonable 
hypotheses is that saturation of chlorophyll content occurred in the prime mature palms, whereas it was 
noticeable that prime mature palms had darker green coloured and thicker leaflets than the young one 
palms. The other explanation to these findings is that while the oil palm foliar is the main N sink for young 
palms, N will remobilise to other developing sinks such as trunk, rachis or cabbage in older palms (Hartley 
1988; Foster 2002), indicating the age-N allocation relationship. Hence, this result might suggest that for 
certain age of perennials, the use of foliar alone for indicating the N status is inadequate and should be 
used to complement measurement of plant growths such as the size of trunk.  
 
In assessing between raw spectral band and spectral index, the latter generated higher accuracy (CVA 
above 75%) irrespective of age groups. These highest accuracy models were attributed to the Vis and 
Vis+NIR indices. Of all the indices measured, the Vis+NIR index i.e. NDVI, NG, IPVI, GNDVI and SAVI (CVA 
=81.82%) were the best in classifying foliar N content of prime mature palms compared to use raw spectral 
band alone such B index (CVA = 75.00%). For young mature palm, N status classification was best 
performed using a Vis index i.e. BGRI1 and BGRI2.  
 

The combination of different visible regions with NIR into spectral indices showed inconsistency 
in terms of the capability to classify N status for different palm age classes. The combination of 
red and NIR terms for classifying N status of both mature palms increased the model’s accuracy 
ranging from 68.18 to 81.82% instead of using the red terms alone (CVA=63.64%). Likewise, the 
CVA of the Vis+NIR index i.e. IPVI for prime mature palm increased to 81.82% in comparison to 
the use of the Vis based index alone. Similarly, the combination of two or three spectral bands in 
Vis index also illustrated inconsistency in classifying N status of different palm age classes. Mostly, 
the CVA of indices engaged with the blue term decreased in comparison to the use of the single 
B index. A similar pattern also was observed on the accuracy of BRI index that integrates the blue 
and red bands. Meanwhile, the indices that engage red and green bands depicted a contrary 
trend, where combined red and green terms increased the classification accuracies instead of 
using the single R index. On the other hand, for the prime mature palm, the VIG index increased 
from 63.64 to 77.27%. A similar observation also was made for the RI and GRI index. 
Implementation of spectral indices such as such NDVI, NG and GNDVI depicted better 
classification accuracy compared to the raw spectral bands, either individually or collectively. The 
application of spectral indices has been proven in enhancing the signal of biochemical properties 
of the plant pigments such chlorophyll, nitrogen and carotenoids by reducing the variation 
among images and enhancing the contrast between vegetation and the ground (Rouse et al. 
1974; Gitelson, Kaufman, and Merzlyak 1996; Hunt et al. 2010). Regardless of palm age groups 
and classifiers, the combination of red and NIR band indices increased classification accuracy 
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instead of using single raw spectral.  NIR reflectance that is sensitive to structural properties of 
the leaf, branch and canopy improves the capability of classification model in assessing foliar N 
content of oil palm. The main reason behind this is due to the high sensitivity of NIR to the canopy 
structure as the function of LAI but not to chlorophyll content. Moreover, the N application has been 
proven to increase the leaf area as well as the LAI of the oil palm (Corley and Mok 1972; Goh and Härdter 
2003). 
 
Meanwhile, the SVM portrayed a robust classification for N status of oil palm. The results from these 
studies were parallel to the several publicised studies that highlighted the advantages of SVM over other 
classifiers in determining the relationship between the spectral feature and nutrient nutrition status in 
crops (Zhai et al. 2013; Wang et al. 2013; Axelsson et al. 2013). The good performance demonstrated by 
the SVM was attributed to the structural risk minimisation (SRM) principle employed in the SVM. SRM 
benefits the controlling process of the generalisation ability of the SVM and thus avoids over-fitting and 
multi-dimensional problems when dealing with spectral data (Smola and Vapnik 1997; Vapnik 2000; Zhang 
et al. 2008).  
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Table 2: Classification of spectral index on young mature palm. 
 

Accuracy (%) TA CVA 

Vis Indices 

Blue 90.00 72.73 

Green 90.00 72.73 

Red 90.00 72.73 

RI 90.00 72.73 

VIG 91.00 72.73 

BGI1 90.00 72.73 

BGI2 90.00 72.73 

GRI 90.00 72.73 

BRI 90.00 72.73 

BGRI1 90.00 79.55 

BGRI2 90.00 79.55 

BGRI3 90.00 72.73 

BGRI4 90.00 72.73 

NIR Indices 

NIR 90.00 72.73 

Combination of Vis and NIR Indices (Vis+NIR) 

NDVI 90.00 72.73 

NG 90.00 72.73 

DVI 90.00 72.73 

GDVI 90.00 72.73 

IPVI 90.00 72.73 

GNDVI 90.00 72.73 

NNIR 90.00 72.73 

SR 90.00 72.73 

GRVI 90.00 72.73 

OSAVI 90.00 72.73 
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SAVI 90.00 72.73 

NR 90.00 72.73 
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Table 3: Classification of spectral index on prime mature palm. 
 

Accuracy (%) TA CVA 

Vis Indices 

Blue 77.00 75.00 

Green 77.00 63.64 

Red 77.00 63.64 

RI 78.00 77.27 

VIG 77.00 77.27 

BGI1 77.00 63.64 

BGI2 77.00 63.64 

GRI 77.00 68.18 

BRI 77.00 72.73 

BGRI1 77.00 63.64 

BGRI2 77.00 65.91 

BGRI3 77.00 63.64 

BGRI4 77.00 63.64 

NIR Indices 

NIR 76.00 72.73 

Combination of Vis and NIR  Indices (Vis+NIR) 

NDVI 77.00 81.82 

NG 77.00 81.82 

DVI 76.00 70.45 

GDVI 76.00 72.74 

IPVI 78.00 81.82 

GNDVI 77.00 81.82 

NNIR 77.00 70.45 

SR 76.00 70.45 

GRVI 77.00 63.64 

OSAVI 78.00 68.18 
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SAVI 78.00 79.55 

NR 77.00 68.18 

 
 
 

CONCLUSIONS 
 
The current findings of this study highlighted the prospect of spectral measurement obtained from the 
satellite imagery with a combination of spectral indices and machine learning analysis in discriminating 
foliar N sufficiency levels of mature oil palms. The results of this study suggest that in general the Vis 
(BGRI1 and BGRI2) and Vis+NIR (NDVI, NG, IPVI and GNDVI) indices are beneficial in discriminating N status 
in young and prime mature palms. Hence, more attention should be given to the age factor when dealing 
with the N study of perennial crops such oil palm. Despite of the age limitation, the result revealed that 
the spectral measurement acquired from the space-borne sensor could classify the N status of oil palm 
with satisfactory accuracy despite the fact that the measurement taken from the canopy level are 
normally confounded with the soil background, canopy structure, leaf structure and branch 
characteristics.  
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